1,662 research outputs found

    Lack of involvement of lipocortin 1 in dexamethasone suppression of IL-1 release

    Get PDF
    The annexin lipocortin 1 is reported to mediate some anti-inflammatory effects of glucocorticoids, but the mechanisms of this mediation are incompletely understood. The involvement of lipocortin 1 in glucocorticoid inhibition of monocyte interleukin 1β (IL-1β) release has been investigated. Treatment of peripheral blood monocytes with 2 μg/ml lipopolysaccharide potently increased IL–1β release (p = 0.001) and dexamethasone (10−7 M) significantly reduced both resting and stimulated IL-1β release (p = 0.009). A neutralizing monoclonal antibody to lipocortin 1 (0.5–50.0 μg/ml) was unable to inhibit this effect and recombinant lipocortin 1 (2 × 10−6 M) and 188aa lipocortin 1 fragment (10−8−10−6 M) had no effect. It is concluded that lipocortin 1 is not involved in the inhibition of monocyte IL-1β release by glucocorticoids

    A randomised crossover trial investigating actual and perceived changes in peak knee extensor torque following Kinesio Tape® application.

    Get PDF
    Also presented by E. Walsh as a "Rapid 5" presentation at the conferenceAbstract: Background: The application and use of Kinesio tape® (KT) has become increasingly popular over the last decade. Previous studies investigating the effect of KT on strength at the knee have provided inconclusive results, and have highlighted the potential for KT to have a placebo effect. Aim: The primary aim investigated the correlation between actual and perceived change in peak knee extensor torque following KT application. The secondary aim sought to determine the extent to which KT improves peak knee extensor torque. Methods: A randomised crossover, placebo controlled design was used. A convenience sample of 36 healthy adults between 18-30 years of age were recruited via email. The three conditions investigated included no tape, acting as a baseline measure, followed by KT and sham tape in a randomised order. Outcome measures included the isokinetic dynamometer to measure peak knee extensor torque at 180°/s and the Global Rating of Change Scale (GRCS) to measure participants’ perception of strength. Results/Findings: No significant correlation was identified between actual and perceived peak knee extensor torque following KT application (P = 0.408). The majority of participants (56%) perceived their strength to have improved following KT. The secondary aim found a significant decrease in peak knee extensor torque after KT compared to no tape (P = 0.005), with no statistical difference when KT was compared to sham tape (P = 0.975). Conclusion: The findings of this study indicate that there is no relationship between participants’ actual strength and their perception of strength following the application of KT. The results of this study do not support the use of KT to improve peak knee extensor torque

    The LWA1 Radio Telescope

    Full text link
    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.Comment: 9 pages, 14 figures, accepted by IEEE Trans. Antennas & Propagation. Various minor changes from previous versio

    Interferometric 12CO(J=2-1) image of the Nuclear Region of Seyfert 1 Galaxy NGC 1097

    Full text link
    We have mapped the central region of the Seyfert 1 galaxy NGC 1097 in 12CO(J=2-1) with the Submillieter Array (SMA). The 12CO(J=2-1) map shows a central concentration and a surrounding ring, which coincide respectively with the Seyfert nucleus and a starburst ring. The line intensity peaks at the nucleus, whereas in a previously published 12CO(J=1-0) map the intensity peaks at the starburst ring. The molecular ring has an azimuthally averaged 12CO(J=2-1)/(J=1-0) intensity ratio (R21) of about unity, which is similar to those in nearby active star forming galaxies, suggesting that most of the molecular mass in the ring is involved in fueling the starburst. The molecular gas can last for only about 1.2\times10^8 years without further replenishment assuming a constant star formation rate and a perfect conversion of gas to stars. The velocity map shows that the central molecular gas is rotating with the molecular ring in the same direction, while its velocity gradient is much steeper than that of the ring. This velocity gradient of the central gas is similar to what is usually observed in some Seyfert 2 galaxies. To view the active nucleus directly in the optical, the central molecular gas structure can either be a low-inclined disk or torus but not too low to be less massive than the mass of the host galaxy itself, be a highly-inclined thin disk or clumpy and thick torus, or be an inner part of the galactic disk. The R21 value of ~1.9 of the central molecular gas component, which is significantly higher than the value found at the molecular gas ring, indicates that the activity of the Seyfert nucleus may have a significant influence on the conditions of the molecular gas in the central component.Comment: 22 pages, 4 figures, accepted by Ap

    Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction

    Get PDF
    Reaction with the hydroxyl (OH) radical is the dominant removal process for volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for reactions of OH with VOCs are therefore essential parameters for chemical mechanisms used in chemistry transport models, and are required more generally for impact assessments involving the estimation of atmospheric lifetimes or oxidation rates for VOCs. Updated and extended structure–activity relationship (SAR) methods are presented for the reactions of OH with aliphatic organic compounds, with the reactions of aromatic organic compounds considered in a companion paper. The methods are optimized using a preferred set of data including reactions of OH with 489 aliphatic hydrocarbons and oxygenated organic compounds. In each case, the rate coefficient is defined in terms of a summation of partial rate coefficients for H abstraction or OH addition at each relevant site in the given organic compound, so that the attack distribution is defined. The information can therefore guide the representation of the OH reactions in the next generation of explicit detailed chemical mechanisms. Rules governing the representation of the subsequent reactions of the product radicals under tropospheric conditions are also summarized, specifically their reactions with O2 and competing processes

    Seasonal dependence of peroxy radical concentrations at a Northern hemisphere marine boundary layer site during summer and winter: evidence for radical activity in winter

    Get PDF
    Peroxy radicals (HO2+Σ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state
    corecore